Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sci Rep ; 12(1): 21491, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2160328

ABSTRACT

A strong association between obesity and COVID-19 complications and a lack of prognostic factors that explain the unpredictable severity among these patients still exist despite the various vaccination programs. The expression of angiotensin converting enzyme 2 (ACE2), the main receptor for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is enhanced in obese individuals. The occurrence of frequent genetic single nucleotide polymorphisms (SNPs) in ACE2 is suggested to increase COVID-19 severity. Accordingly, we hypothesize that obesity-associated ACE2 polymorphisms increase the severity of COVID-19. In this study, we profiled eight frequently reported ACE2 SNPs in a cohort of lean and obese COVID-19 patients (n = 82). We highlight the significant association of rs2285666, rs2048683, rs879922, and rs4240157 with increased severity in obese COVID-19 patients as compared to lean counterparts. These co-morbid-associated SNPs tend to positively correlate, hence proposing possible functional cooperation to ACE2 regulation. In obese COVID-19 patients, rs2285666, rs879922, and rs4240157 are significantly associated with increased blood nitrogen urea and creatinine levels. In conclusion, we highlight the contribution of ACE2 SNPs in enhancing COVID-19 severity in obese individuals. The results from this study provide a basis for further investigations required to shed light on the underlying mechanisms of COVID-19 associated SNPs in COVID-19 obese patients.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Obesity , Humans , Angiotensin-Converting Enzyme 2/genetics , COVID-19/complications , COVID-19/genetics , Obesity/complications , Obesity/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2/metabolism
2.
PLoS One ; 17(7): e0269185, 2022.
Article in English | MEDLINE | ID: covidwho-1938437

ABSTRACT

Coronavirus Disease (COVID-19) was declared a pandemic by WHO in March 2020. Since then, additional novel coronavirus variants have emerged challenging the current healthcare system worldwide. There is an increased need for hospital care, especially intensive care unit (ICU), for the patients severely affected by the disease. Most of the studies analyzed COVID-19 infected patients in the hospitals and established the positive correlation between clinical parameters such as high levels of D-dimer, C-reactive protein, and ferritin to the severity of infection. However, little is known about the course of the ICU admission. The retrospective study carried out at University Hospital Sharjah, UAE presented here reports an integrated analysis of the biochemical and radiological factors among the newly admitted COVID-19 patients to decide on their ICU admission. The descriptive statistical analysis revealed that patients with clinical presentations such as acute respiratory distress syndrome (ARDS) (p<0.0001) at the time of admission needed intensive care. The ROC plot indicated that radiological factors including high chest CT scores (>CO-RADS 4) in combination with biochemical parameters such as higher levels of blood urea nitrogen (>6.7 mg/dL;66% sensitivity and 75.8% specificity) and ferritin (>290 µg/mL, 71.4% sensitivity and 77.8% specificity) may predict ICU admission with 94.2% accuracy among COVID-19 patients. Collectively, these findings would benefit the hospitals to predict the ICU admission amongst COVID-19 infected patients.


Subject(s)
COVID-19 , Blood Urea Nitrogen , Ferritins , Humans , Intensive Care Units , Retrospective Studies , Tomography, X-Ray Computed
3.
Front Immunol ; 13: 865845, 2022.
Article in English | MEDLINE | ID: covidwho-1834407

ABSTRACT

Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19) outcome has been explored via several predictive models, using specific clinical or biochemical parameters. In the current study, we developed an integrative non-linear predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and radiological data of patients with different disease severities. Initially, the immunological signature of the disease was investigated through transcriptomics analysis of nasopharyngeal swab samples of patients with different COVID-19 severity versus control subjects (exploratory cohort, n=61), identifying significant differential expression of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis factors-α, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC analysis of the predictive capacity of cytokines and biochemical markers, respectively). Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients, whereas interferon-gamma (IFN-γ), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-10 in severe cases. Combining basic biochemical and radiological investigations with a limited number of curated cytokines will likely attain accurate predictive value in COVID-19. The model-derived cytokines highlight critical pathways in the pathophysiology of the COVID-19 with insight towards potential therapeutic targets. Our modeling methodology can be implemented using new datasets to identify key players and predict outcomes in new variants of COVID-19.


Subject(s)
COVID-19 , Cytokines , Disease Progression , Humans , Pandemics , SARS-CoV-2 , Severity of Illness Index
4.
Front Med (Lausanne) ; 9: 790475, 2022.
Article in English | MEDLINE | ID: covidwho-1798933
5.
PLoS One ; 17(3): e0264682, 2022.
Article in English | MEDLINE | ID: covidwho-1724857

ABSTRACT

Global and local whole genome sequencing of SARS-CoV-2 enables the tracing of domestic and international transmissions. We sequenced Viral RNA from 37 sampled Covid-19 patients with RT-PCR-confirmed infections across the UAE and developed time-resolved phylogenies with 69 local and 3,894 global genome sequences. Furthermore, we investigated specific clades associated with the UAE cohort and, their global diversity, introduction events and inferred domestic and international virus transmissions between January and June 2020. The study comprehensively characterized the genomic aspects of the virus and its spread within the UAE and identified that the prevalence shift of the D614G mutation was due to the later introductions of the G-variant associated with international travel, rather than higher local transmissibility. For clades spanning different emirates, the most recent common ancestors pre-date domestic travel bans. In conclusion, we observe a steep and sustained decline of international transmissions immediately following the introduction of international travel restrictions.


Subject(s)
COVID-19/transmission , COVID-19/virology , Infection Control/methods , SARS-CoV-2/genetics , Travel/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , Child , Child, Preschool , Female , Genome, Viral/genetics , Humans , Male , Middle Aged , Molecular Typing/methods , Mutation , Phylogeny , RNA, Viral , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Travel-Related Illness , United Arab Emirates/epidemiology , Whole Genome Sequencing , Young Adult
6.
BMC Oral Health ; 21(1): 567, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1505560

ABSTRACT

BACKGROUND: The oral cavity represents a main entrance of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and transmembrane serine protease 2 (TMPRSS2) are essential for the entry of SARS-CoV-2 to the host cells. Both ACE-2 and NRP-1 receptors and TMPRSS2 have been identified in the oral cavity. However, there is limited knowledge about the impact of periapical lesions and their metabolites on the expression of these critical genes. This study aims to measure the impact of periapical lesions and their unique fatty acids (FAs) metabolites on the expression of the aforementioned genes, in addition to interleukin 6 (IL-6) gene and hence SARS-CoV-2 infection loads can be estimated. METHODS: Gene expression of ACE-2, NRP-1, TMPRSS2, and IL-6 was performed in periapical lesions in comparison to healthy oral cavity. Since FAs are important immunomodulators required for the lipid synthesis essential for receptors synthesis and viral replication, comparative FAs profiling was determined in oral lesions and healthy pulp tissues using gas chromatography-mass spectrometry (GC-MS). The effect of major identified and unique FAs was tested on mammalian cells known to express ACE-2, NRP-1, and TMPRSS2 genes. RESULTS: Gene expression analysis indicated that ACE-2, NRP-1, and TMPRSS2 were significantly upregulated in healthy clinical samples compared to oral lesions, while the reverse was true with IL-6 gene expression. Saturated and monounsaturated FAs were the major identified shared and unique FAs, respectively. Major shared FAs included palmitic, stearic and myristic acids with the highest percentage in the healthy oral cavity, while unique FAs included 17-octadecynoic acid in periapical abscess, petroselinic acid and L-lactic acid in periapical granuloma, and 1-nonadecene in the radicular cyst. Computational prediction showed that the binding affinity of identified FAs to ACE-2, TMPRSS2 and S protein were insignificant. Further, FA-treated mammalian cells showed significant overexpression of ACE-2, NRP-1 and TMPRSS2 genes except with L-lactic acid and oleic acid caused downregulation of NRP-1 gene, while 17-octadecynoic acid caused insignificant effect. CONCLUSION: Collectively, a healthy oral cavity is more susceptible to viral infection when compared to that complicated with periapical lesions. FAs play important role in viral infection and their balance can affect the viral loads. Shifting the balance towards higher levels of palmitic, stearic and 1-nonadecene caused significant upregulation of the aforementioned genes and hence higher viral loads. On the other hand, there is a reverse correlation between inflammation and expression of SARS-CoV-2 receptors. Therefore, a mouth preparation that can reduce the levels of palmitic, stearic and 1-nonadecene, while maintaining an immunomodulatory effect can be employed as a future protection strategy against viral infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mouth , Viral Load
7.
Front Pharmacol ; 12: 631879, 2021.
Article in English | MEDLINE | ID: covidwho-1488443

ABSTRACT

Mitogen-activated protein kinases (MAPK) and NF-kappaB (NF-κB) pathway regulate many cellular processes and are essential for immune cells function. Their activity is controlled by dual-specificity phosphatases (DUSPs). A comprehensive analysis of publicly available gene expression data sets of human airway epithelial cells (AECs) infected with SARS-CoV-2 identified DUSP1 and DUSP5 among the lowest induced transcripts within these pathways. These proteins are known to downregulate MAPK and NF-κB pathways; and their lower expression was associated with increased activity of MAPK and NF-κB signaling and enhanced expression of proinflammatory cytokines such as TNF-α. Infection with other coronaviruses did not have a similar effect on these genes. Interestingly, treatment with chloroquine and/or non-steroidal anti-inflammatory drugs counteracted the SARS-CoV-2 induced reduction of DUSP1 and DUSP5 genes expression. Therapeutically, impeding this evasion mechanism of SARS-CoV-2 may help control the exaggerated activation of these immune regulatory pathways during a COVID-19 infection.

8.
Front Immunol ; 12: 686462, 2021.
Article in English | MEDLINE | ID: covidwho-1317225

ABSTRACT

Immune homeostasis is disturbed during severe viral infections, which can lead to loss of tolerance to self-peptides and result in short- or long-term autoimmunity. Using publicly available transcriptomic datasets, we conducted an in-silico analyses to evaluate the expression levels of 52 autoantigens, known to be associated with 24 autoimmune diseases, during SAR-CoV-2 infection. Seven autoantigens (MPO, PRTN3, PADI4, IFIH1, TRIM21, PTPRN2, and TSHR) were upregulated in whole blood samples. MPO and TSHR were overexpressed in both lung autopsies and whole blood tissue and were associated with more severe COVID-19. Neutrophil activation derived autoantigens (MPO, PRTN3, and PADI4) were prominently increased in blood of both SARS-CoV-1 and SARS-CoV-2 viral infections, while TSHR and PTPRN2 autoantigens were specifically increased in SARS-CoV-2. Using single-cell dataset from peripheral blood mononuclear cells (PBMCs), we observed an upregulation of MPO, PRTN3, and PADI4 autoantigens within the low-density neutrophil subset. To validate our in-silico analysis, we measured plasma protein levels of two autoantigens, MPO and PRTN3, in severe and asymptomatic COVID-19. The protein levels of these two autoantigens were significantly upregulated in more severe COVID-19 infections. In conclusion, the immunopathology and severity of COVID-19 could result in transient autoimmune activation. Longitudinal follow-up studies of confirmed cases of COVID-19 could determine the enduring effects of viral infection including development of autoimmune disease.


Subject(s)
Autoantigens/genetics , Autoimmunity/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Transcriptome , Asymptomatic Diseases , Autoantigens/blood , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Computer Simulation , Databases, Genetic , Humans , Lung/pathology , Myeloblastin/blood , Myeloblastin/genetics , Neutrophil Activation , Neutrophils/immunology , Peroxidase/blood , Peroxidase/genetics , RNA-Seq , Severity of Illness Index , Up-Regulation/genetics
9.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1314719

ABSTRACT

The emergence of the COVID-19 pandemic has mandated the instant (re)search for potential drug candidates. In response to the unprecedented situation, it was recognized early that repurposing of available drugs in the market could timely save lives, by skipping the lengthy phases of preclinical and initial safety studies. BenevolentAI's large knowledge graph repository of structured medical information suggested baricitinib, a Janus-associated kinase inhibitor, as a potential repurposed medicine with a dual mechanism; hindering SARS-CoV2 entry and combatting the cytokine storm; the leading cause of mortality in COVID-19. However, the recently-published Adaptive COVID-19 Treatment Trial-2 (ACTT-2) positioned baricitinib only in combination with remdesivir for treatment of a specific category of COVID-19 patients, whereas the drug is not recommended to be used alone except in clinical trials. The increased pace of data output in all life sciences fields has changed our understanding of data processing and manipulation. For the purpose of drug design, development, or repurposing, the integration of different disciplines of life sciences is highly recommended to achieve the ultimate benefit of using new technologies to mine BIG data, however, the final say remains to be concluded after the drug is used in clinical practice. This review demonstrates different bioinformatics, chemical, pharmacological, and clinical aspects of baricitinib to highlight the repurposing journey of the drug and evaluates its placement in the current guidelines for COVID-19 treatment.

10.
Front Immunol ; 12: 595150, 2021.
Article in English | MEDLINE | ID: covidwho-1311373

ABSTRACT

As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Kidney/immunology , Liver/immunology , Lung/immunology , Myocardium/immunology , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Case-Control Studies , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/biosynthesis , Humans , Immunity/genetics , Monocytes/immunology , Neutrophils/immunology , Transcriptome , Up-Regulation/genetics
11.
World J Gastroenterol ; 27(21): 2850-2870, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1256684

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19), a pandemic contributing to more than 105 million cases and more than 2.3 million deaths worldwide, was described to be frequently accompanied by extrapulmonary manifestations, including liver dysfunction. Liver dysfunction and elevated liver enzymes were observed in about 53% of COVID-19 patients. AIM: To gain insight into transcriptional abnormalities in liver tissue of severe COVID-19 patients that may result in liver dysfunction. METHODS: The transcriptome of liver autopsy samples from severe COVID-19 patients against those of non-COVID donors was analyzed. Differentially expressed genes were identified from normalized RNA-seq data and analyzed for the enrichment of functional clusters and pathways. The differentially expressed genes were then compared against the genetic signatures of liver diseases including cirrhosis, fibrosis, non-alcoholic fatty liver disease (NAFLD), and hepatitis A/B/C. Gene expression of some differentially expressed genes was assessed in the blood samples of severe COVID-19 patients with liver dysfunction using qRT-PCR. RESULTS: Analysis of the differential transcriptome of the liver tissue of severe COVID-19 patients revealed a significant upregulation of transcripts implicated in tissue remodeling including G-coupled protein receptors family genes, DNAJB1, IGF2, EGFR, and HDGF. Concordantly, the differential transcriptome of severe COVID-19 liver tissues substantially overlapped with the disease signature of liver diseases characterized with pathological tissue remodeling (liver cirrhosis, Fibrosis, NAFLD, and hepatitis A/B/C). Moreover, we observed a significant suppression of transcripts implicated in metabolic pathways as well as mitochondrial function, including cytochrome P450 family members, ACAD11, CIDEB, GNMT, and GPAM. Consequently, drug and xenobiotics metabolism pathways are significantly suppressed suggesting a decrease in liver detoxification capacity. In correspondence with the RNA-seq data analysis, we observed a significant upregulation of DNAJB1 and HSP90AB1 as well as significant downregulation of CYP39A1 in the blood plasma of severe COVID-19 patients with liver dysfunction. CONCLUSION: Severe COVID-19 patients appear to experience significant transcriptional shift that may ensue tissue remodeling, mitochondrial dysfunction and lower hepatic detoxification resulting in the clinically observed liver dysfunction.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , HSP40 Heat-Shock Proteins , Humans , Liver , SARS-CoV-2 , Steroid Hydroxylases , Systems Biology , Transcriptome
12.
Front Med (Lausanne) ; 8: 592336, 2021.
Article in English | MEDLINE | ID: covidwho-1238867

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious virus with overwhelming demand on healthcare systems, which require advanced predictive analytics to strategize COVID-19 management in a more effective and efficient manner. We analyzed clinical data of 2017 COVID-19 cases reported in the Dubai health authority and developed predictive models to predict the patient's length of hospital stay and risk of death. A decision tree (DT) model to predict COVID-19 length of stay was developed based on patient clinical information. The model showed very good performance with a coefficient of determination R 2 of 49.8% and a median absolute deviation of 2.85 days. Furthermore, another DT-based model was constructed to predict COVID-19 risk of death. The model showed excellent performance with sensitivity and specificity of 96.5 and 87.8%, respectively, and overall prediction accuracy of 96%. Further validation using unsupervised learning methods showed similar separation patterns, and a receiver operator characteristic approach suggested stable and robust DT model performance. The results show that a high risk of death of 78.2% is indicated for intubated COVID-19 patients who have not used anticoagulant medications. Fortunately, intubated patients who are using anticoagulant and dexamethasone medications with an international normalized ratio of <1.69 have zero risk of death from COVID-19. In conclusion, we constructed artificial intelligence-based models to accurately predict the length of hospital stay and risk of death in COVID-19 cases. These smart models will arm physicians on the front line to enhance management strategies to save lives.

13.
Mol Ther Methods Clin Dev ; 20: 109-121, 2021 Mar 12.
Article in English | MEDLINE | ID: covidwho-919564

ABSTRACT

The immune system is tightly regulated by the activity of stimulatory and inhibitory immune receptors. This immune homeostasis is usually disturbed during chronic viral infection. Using publicly available transcriptomic datasets, we conducted in silico analyses to evaluate the expression pattern of 38 selected immune inhibitory receptors (IRs) associated with different myeloid and lymphoid immune cells during coronavirus disease 2019 (COVID-19) infection. Our analyses revealed a pattern of overall upregulation of IR mRNA during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A large number of IRs expressed on both lymphoid and myeloid cells were upregulated in nasopharyngeal swabs (NPSs), while lymphoid-associated IRs were specifically upregulated in autopsies, reflecting severe, terminal stage COVID-19 disease. Eight genes (BTLA, LAG3, FCGR2B, PDCD1, CEACAM1, CTLA4, CD72, and SIGLEC7), shared by NPSs and autopsies, were more expressed in autopsies and were directly correlated with viral levels. Single-cell data from blood and bronchoalveolar samples also reflected the observed association between IR upregulation and disease severity. Moreover, compared to SARS-CoV-1, influenza, and respiratory syncytial virus infections, the number and intensities of upregulated IRs were higher in SARS-CoV-2 infections. In conclusion, the immunopathology and severity of COVID-19 could be attributed to dysregulation of different immune inhibitors. Targeting one or more of these immune inhibitors could represent an effective therapeutic approach for the treatment of COVID-19 early and late immune dysregulations.

14.
Sci Rep ; 10(1): 17720, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-882926

ABSTRACT

International travel played a significant role in the early global spread of SARS-CoV-2. Understanding transmission patterns from different regions of the world will further inform global dynamics of the pandemic. Using data from Dubai in the United Arab Emirates (UAE), a major international travel hub in the Middle East, we establish SARS-CoV-2 full genome sequences from the index and early COVID-19 patients in the UAE. The genome sequences are analysed in the context of virus introductions, chain of transmissions, and possible links to earlier strains from other regions of the world. Phylogenetic analysis showed multiple spatiotemporal introductions of SARS-CoV-2 into the UAE from Asia, Europe, and the Middle East during the early phase of the pandemic. We also provide evidence for early community-based transmission and catalogue new mutations in SARS-CoV-2 strains in the UAE. Our findings contribute to the understanding of the global transmission network of SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Aged , Asia/epidemiology , Betacoronavirus/classification , Betacoronavirus/isolation & purification , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Europe/epidemiology , Female , Humans , Male , Middle Aged , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Spatio-Temporal Analysis , Travel , United Arab Emirates/epidemiology , Whole Genome Sequencing , Young Adult
15.
Front Physiol ; 11: 555039, 2020.
Article in English | MEDLINE | ID: covidwho-842815

ABSTRACT

The ongoing COVID-19 pandemic is caused by the novel coronavirus SARS-CoV-2. Age, smoking, obesity, and chronic diseases such as cardiovascular disease and diabetes have been described as risk factors for severe complications and mortality in COVID-19. Obesity and diabetes are usually associated with dysregulated lipid synthesis and clearance, which can initiate or aggravate pulmonary inflammation and injury. It has been shown that for viral entry into the host cell, SARS-CoV-2 utilizes the angiotensin-converting enzyme 2 (ACE2) receptors present on the cells. We aimed to characterize how SARS-CoV-2 dysregulates lipid metabolism pathways in the host and the effect of dysregulated lipogenesis on the regulation of ACE2, specifically in obesity. In our study, through the re-analysis of publicly available transcriptomic data, we first found that lung epithelial cells infected with SARS-CoV-2 showed upregulation of genes associated with lipid metabolism, including the SOC3 gene, which is involved in the regulation of inflammation and inhibition of leptin signaling. This is of interest as viruses may hijack host lipid metabolism to allow the completion of their viral replication cycles. Furthermore, a dataset using a mouse model of diet-induced obesity showed a significant increase in Ace2 expression in the lungs, which negatively correlated with the expression of genes that code for sterol response element-binding proteins 1 and 2 (SREBP). Suppression of Srebp1 showed a significant increase in Ace2 expression in the lung. Moreover, ACE2 expression in human subcutaneous adipose tissue can be regulated through changes in diet. Validation of the in silico data revealed a higher expression of ACE2, TMPRSS2 and SREBP1 in vitro in lung epithelial cells from obese subjects compared to non-obese subjects. To our knowledge this is the first study to show upregulation of ACE2 and TMPRSS2 in obesity. In silico and in vitro results suggest that the dysregulated lipogenesis and the subsequently high ACE2 expression in obese patients might be the mechanism underlying the increased risk for severe complications in those patients when infected by SARS-CoV-2.

16.
Clin Transl Sci ; 13(6): 1048-1054, 2020 11.
Article in English | MEDLINE | ID: covidwho-717294

ABSTRACT

Besides the respiratory system, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection was shown to affect other essential organs such as the kidneys. Early kidney involvement during the course of infection was associated with worse outcomes, which could be attributed to the direct SARS-CoV-2 infection of kidney cells. In this study, the effect of commonly used medications on the expression of SARS-CoV-2 receptor, angiotensin-converting enzyme (ACE)2, and TMPRSS2 protein in kidney tissues was evaluated. This was done by in silico analyses of publicly available transcriptomic databases of kidney tissues of rats treated with multiple doses of commonly used medications. Of 59 tested medications, 56% modified ACE2 expression, whereas 24% modified TMPRSS2 expression. ACE2 was increased with only a few of the tested medication groups, namely the renin-angiotensin inhibitors, such as enalapril, antibacterial agents, such as nitrofurantoin, and the proton pump inhibitor, omeprazole. The majority of the other medications decreased ACE2 expression to variable degrees with allopurinol and cisplatin causing the most noticeable downregulation. The expression level of TMPRSS2 was increased with a number of medications, such as diclofenac, furosemide, and dexamethasone, whereas other medications, such as allopurinol, suppressed the expression of this gene. The prolonged exposure to combinations of these medications could regulate the expression of ACE2 and TMPRSS2 in a way that may affect kidney susceptibility to SARS-CoV-2 infection. Data presented here suggest that we should be vigilant about the potential effects of commonly used medications on kidney tissue expression of ACE2 and TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/complications , Kidney/metabolism , Receptors, Coronavirus/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Animals , Gene Expression Regulation/drug effects , Rats
17.
Int J Cardiol Hypertens ; 6: 100034, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-548968

ABSTRACT

INTRODUCTION: Emerging epidemiological studies suggested that Renin-Angiotensin-Aldosterone system (RAAS) inhibitors may increase infectivity and severity of COVID-19 by modulating the expression of ACE2. METHODS: In silico analysis was conducted to compare the blood expression levels of SARS-CoV-2 entry genes between age and gender matched cohort of hypertensive patients versus control, and to determine the effect of common cardiovascular medications on the expression of COVID-19 receptors in vitro using primary human hepatocytes. RESULTS: The transcriptomic analysis revealed a significant increase of ACE2 and TMPRSS2 in the blood of patients with hypertension. Treatment of primary human hepatocytes with captopril, but not enalapril, significantly increased ACE2 expression. A similar pattern of ACE2 expression was found following the in vitro treatments of rat primary cells with captopril and enalapril. Telmisartan, a second class RAAS inhibitors, did not affect ACE2 levels. We have also tested other cardiovascular medications that may be used alone, or in combination with RAAS inhibitors. Some of these medications increased TMPRSS2, while others, like furosemide, significantly reduced COVID-19 receptors. CONCLUSIONS: The increase in ACE2 expression levels could be due to chronic use of RAAS inhibitors or alternatively caused by other hypertension-related factors or presence of other comorbidities. Treatment of common co-morbidities often require chronic use of multiple medications, which may result in an additive increase in the expression of ACE2 and TMPRSS2. Our data suggest that more research is needed to determine the effect of different medications, as well as medication combinations, on COVID-19 receptors.

SELECTION OF CITATIONS
SEARCH DETAIL